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Abstract
● AIM: To confirm whether exosome-mediated delivery of 
aptamer S58 (Exo-S58) has a better antifibrotic effect than 
naked S58 in human conjunctival fibroblasts (HConFs) and 
a rat glaucoma filtration surgery (GFS) model.
● METHODS: To enhance the effective reaction time of 
aptamer S58 in vivo, we loaded aptamer S58 into exosomes 
derived from HEK293T cells by PEI transfection to determine 
the effect of Exo-S58 in HConFs and a rat GFS model.
● RESULTS: Exo-S58 can significantly reduce cell 
proliferation, migration and fibrosis in TGF-β2-induced 
HConFs. In an in vivo experiment, Exo-S58 treatment 
prolonged filtering bleb retention and reduced fibrosis 
compared with naked S58 treatment in GFS rats.
● CONCLUSION: The exosomes are safe and valid 
carriers to deliver aptamers. Furthermore, Exo-S58 exhibited 
superior antifibrotic effect than naked S58 both in HConFs 
cells and rat GFS models.
● KEYWORDS: nanomedicine; exosomes; aptamer; drug 
delivery; glaucoma surgery; transforming growth factor-beta; 
anti-fibrosis
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INTRODUCTION

G laucoma is recognized as an irreversible progressive 
neurodegenerative eye disease that can cause optic 

atrophy, visual field defects and blindness[1-3]. According to 
previous studies, glaucoma is also a multifactorial disease 
accompanied by pathologically elevated intraocular pressure 
(IOP) as the most important risk factor[4-6]. As such, glaucoma 
filtration surgery (GFS) has been an integral part of glaucoma 
control strategies through drainage of the aqueous humour to 
decrease IOP[7-9]. However, surgical failure may occur because 
of excessive subconjunctival fibrosis and scar formation 
caused by wound vascular reaction, exudate stimulation and 
hormones[10-12]. Mitomycin C (MMC) and 5-fluorouracil (5-FU) 
have been generally used to avoid unexpected filtering bleb 
fibrosis in clinical practice and have side effects such as bleb 
leakage, endophthalmitis and corneal epithelial toxicity[13-15]. 
Therefore, it is necessary to identify safe and effective antifibrotic 
alternatives that can be used to prevent scar formation and 
preserve filtering bleb function after GFS. 
Previous reports have demonstrated that transforming 
growth factor-β (TGF-β) ligands play a crucial role in cell 
proliferation, migration, conjunctival scarring and wound 
healing[16-17]. As one of the identified TGF-β isoforms, TGF-β2 
is closely related to the process of conjunctival scarring and 
fibrosis[18-19]. Consequently, TGF-β ligands or receptors are 
therapeutic targets in the process of postoperative fibrosis 
through antibody neutralization[20-21], proteoglycan-like decorin 
inactivation and blockage of exogenous receptors[22-23].
Aptamers are single-stranded DNA (ssDNA) or RNA 
oligonucleotides that can bind to a target protein[24-25] and are 
characterized by low toxicity[26], high selectivity and binding 
affinity[27]. In our previous study, we applied systematic 
evolution of ligands by exponential enrichment (SELEX) 
to identify and synthesize the DNA aptamer S58, which 
could bind to TGF-β receptor II (TβRII) with high affinity. 
Experiments in vitro and in vivo proved that aptamer S58 could 
reduce TGF-β2-induced fibrosis, and fewer myofibroblasts were 
observed in the S58 group compared with MMC groups[28-29]. 
However, the aptamer’s effective reaction time was limited by 
nuclease degradation. Thus, it deserves advanced investigation 
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to determine whether a nontoxic and protective delivery vector 
can preserve the efficacy of aptamer S58.
Recently, exosome drug delivery systems have received great 
attention due to their high delivery efficiency, long circulation 
times and great biocompatibility[30-33]. Furthermore, exosomes 
have multiple advantages compared to viruses and existing 
synthetic carrier systems in terms of immunogenicity, blood 
stability and tissue penetration[33]. Several studies have shown that 
exosomes carrying short interfering ribonucleic acid (siRNA) 
sequences could access target tissues for drug delivery[33-35].
In this study, we loaded S58 into exosomes (Exo-S58) and 
confirmed whether Exo-S58 has a better antifibrotic effect than 
naked S58 in human conjunctival fibroblast (HConF) cells and 
in rat GFS models.
MATERIALS AND METHODS
Ethical Approval  Animal experiments were approved by the 
Animal Ethics Committee of Chongqing Medical University. 
All animal procedures complied with the ARVO Statement for 
the Use of Animals in Ophthalmic and Visual Research.
Cell Culture and Treatment  The human embryonic kidney 
cell line HEK293T was cultured in complete medium containing 
10% exosome-free foetal bovine serum (FBS; Biological 
Industries, Kibbutz Beit Haemek, Israel), Dulbecco’s modified 
Eagle’s medium (DMEM; Biological Industries), and 1% 
cyan-streptomycin (Biological Industries) at 37℃ and 5% 
CO2. Primary HConFs were cultured in complete medium 
containing 10% FBS, DMEM and 1% cyan-streptomycin at 
37℃ and 5% CO2. In the S58 treatment group, aptamer S58 
was first diluted in ddH2O to a final concentration of 50 nmol/L. 
Exosomes (3.75 μg) loaded with 50 nmol/L S58 were used in 
the Exo-S58 treatment group. For exosome treatment, 3.75 μg 
of unloaded exosomes were used. TGF-β2 (5 ng/mL, PeproTech, 
Rocky Hill, NJ, USA) was used for all cell experiments.
Isolation and Characterization of Exosomes  HEK293T 
cell culture medium was obtained every other day followed by 
centrifugation at 300×g for 10min and 2000×g for 10min. After 
further centrifugation at 10 000×g for 45min, the supernatant 
was filtered through a 0.22-μm filter membrane. Exosome 
pellets can be obtained through two runs of ultracentrifugation 
(CP100MX, Hitachi, Japan) at 100 000×g for 70min[36]. The 
collected pellets were resuspended in phosphate-buffered 
saline (PBS) and stored at -80℃ for further use.
For the transmission electron microscopy (TEM) assay, 
exosome pellets were added to copper grids for fixation. A 2% 
uranyl acetate solution was then put on grids for 5min at room 
temperature. Images were taken by an electron microscope 
(HT7700, Hitachi, Japan) after the grids were washed and 
dried. Nano flow cytometry (NanoFCM; Fujian, China) was 
employed to measure the size distribution of the exosome 
pellets[37]. The expression level of marker proteins of purified 

exosomes was detected by Western blot containing the primary 
antibodies rabbit anti-CD63 (ab134045, Abcam, Cambridge, 
MA, USA), rabbit anti-CD81 (ab109201, Abcam), and rabbit 
anti-TSG101 (ab125011, Abcam).
Aptamer S58 Loading  For aptamer loading, 7.5 μg of 
exosomes was incubated with the aptamer mixture after 
a 20-min incubation of 100 nmol/L S58 (Sangon Biotech, 
Shanghai, China) and 1 mg/mL polyethyleneimine (PEI) 
in Hepes buffered saline (HBS) according to the PEI-
transferrinfection kit protocol (Thermo Scientific, Carlsbad, 
MA, USA). Ultracentrifugation at 100 000×g for 90min was 
performed to remove the redundant aptamers and PEI after 
incubation at 4℃. The resulting pellet was rinsed and then 
resuspended in PBS. Nano flow cytometry was applied to 
measure the loading efficiency of aptamer S58.
Exosomal Staining  Exosomes were stained with a PKH26 
red fluorescent cell labelling kit (Ur52302, Umibio, Shanghai, 
China) according to the manufacturer’s protocol[38]. In brief, 
the PKH26 linker was diluted with 100 μmol/L Diluent C. 
Then, 10 μg of exosomes was added to 50 μL of dye solution 
and mixed by pipetting for 1min. After 10min of incubation at 
37℃, the staining solution was resuspended in 10 mL of PBS. 
Ultracentrifugation at 100 000×g for 90min was performed to 
remove redundant dye at 4℃. The exosomes were resuspended 
in PBS for further use. The fluorescence intensity of PKH26-
labelled exosomes was detected by confocal microscopy.
Cell Cytotoxicity Assay  HConFs were seeded into 96-well 
plates at a density of 4×103 cells per well and cultured in 
200 μL of fresh complete medium with different treatments 
for 24, 48, and 72h. Cell cytotoxicity was detected with an 
LDH cytotoxicity assay kit (C0017, Beyotime, Shanghai, 
China). Twelve microlitres of LDH release reagent was added 
per well and incubated with cells for 1h. After centrifugation 
at 400×g for 5min, 120 μL of supernatant from each well was 
collected in new 96-well plates. The absorbance values at 
490 nm of each well were determined by Multiscan Spectrum 
(BioTek, Winooski, VT, USA), and the LDH release rate was 
statistically evaluated.
Cell Viability Assay  HConFs were plated into 96-well plates 
at a density of 4×103 cells per well and cultured in 100 μL of 
fresh complete medium with different treatments for 24, 48, 
and 72h. Ten microlitres of CCK-8 reagent (Biosharp, Beijing, 
China) were added per well and incubated with the cells for 2h. 
The absorbance values at 450 nm of each well were identified 
by Multiscan Spectrum (BioTek), and the cell viability rate 
was statistically analysed.
Immunofluorescence Microscopy  HConFs were plated 
into 24-well plates at a density of 1×104 cells per well and 
treated with PKH26-labelled exosomes loaded with Alexa 
488-labelled S58. The cells were rinsed and fixed with 4% 
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paraformaldehyde solution for 15min at room temperature 
immediately after permeabilization with 0.1% Triton X-100 
for 15min and blocking with 1% bovine serum albumin (BSA) 
for 1h at room temperature. 4’,6-diamidino-2-phenylindole 
(DAPI) staining was performed for 10 min. Images were taken 
by an inverted fluorescence microscope (Ti2-U, Nikon, Japan) 
and analysed.
Cell Migration Assay  HConFs were plated at a density of 
4×103 cells per well and cultured in 100 μL of serum-free 
medium in 24-well migration chambers. Then, 600 μL of 
fresh complete medium with 20% FBS was added below the 
chambers. Cell medium was removed from the chambers 
after cells were incubated with different treatments for 24h at 
37℃. Then, the cells were fixed and stained with crystal violet for 
15min at room temperature followed by three washes with PBS. 
Photographs were taken by an inverted microscope (Nikon).
Western Blot  Isolated HConFs and exosomes were lysed for 
40min on ice with radioimmunoprecipitation (RIPA) buffer 
(Beyotime) containing protease inhibitors (Thermo Scientific, 
IL, USA). The supernatant was extracted after centrifugation 
at 12 000×g for 15min, and a bicinchoninic acid kit (BCA; 
Beyotime) was used to quantify the protein according to the 
manufacturer’s protocol. The extracted samples were separated 
by 6%-15% SDS-polyacrylamide gel electrophoresis (PAGE) 
and transferred onto a polyvinylidene fluoride (PVDF) 
membrane (Millipore, Billerica, MA, USA). Following 
blocking in Western blocking buffer (Beyotime) for 1h, 
membranes were incubated with primary antibodies including 
rabbit anti-collagen I (ab260043, Abcam), rabbit anti-vimentin 
(ab92547, Abcam), mouse anti-α-SMA (ab7817, Abcam), 
rabbit anti-fibronectin (ab268020, Abcam), rabbit anti-CD63 
(ab134045, Abcam), rabbit anti-CD81 (ab109201, Abcam), 
rabbit anti-TSG101 (ab125011, Abcam) and mouse anti-
GAPDH (AG019, Beyotime, China) overnight at 4℃. After 
rinsing three times with Tris-buffered saline Tween (TBST) for 
10min, the protein membranes were incubated with the specific 
HRP-linked secondary antibody for 1h at room temperature. 
The protein membranes were visualized with a gel imaging 
analysis system (Bio-Rad, Hercules, CA, USA).
Experimental Animals and Treatment  Totally 24 Adult 
male Sprague-Dawley rats that weighed 200-300 g were 
purchased from the Laboratory Animal Center of Chongqing 
Medical University. The rats were anaesthetised by an 
intraperitoneal injection of 5 mL/kg 7% chloral hydrate 
(Sangon Biotech) followed by ocular surface anaesthesia 
using 0.5% oxybuprocaine hydrochloride eye drops (Santen 
Pharmaceutical Co., Ltd. Osaka, Japan). GFS in the rats was 
performed on bilateral eyes based on a previous technique[39]. 

Then, the rats were treated with subconjunctival injection 
containing saline, S58 (50 nmol/L) or Exo-S58 (3.75 μg) 

randomly every other week after surgery (n=6/group). The 
effects of different interventions against scar formation through 
subconjunctival injection were evaluated at days 0, 7, and 14. 
Additionally, rats operated eyes were tested and evaluated 
for IOP and filtering bleb using a slit lamp (CARL ZEISS, 
Germany) and tenonometer (TonoPen; Medtronic Solan, FL, 
USA), respectively, at specific times.
Histological Analysis  To observe the change in scarring 
formation following GFS, the eyeballs from the rats 
were collected and fixed with 4% paraformaldehyde on 
postoperative day 14. After dehydration with graded ethanol, the 
conjunctival tissue was embedded in paraffin. Haematoxylin-
eosin (HE) staining and Masson staining were used to detect 
the percentage of collagen after 3-μm-thick sections from 
the eyeballs were sliced. Furthermore, immunofluorescence 
staining was also performed to determine the tissue fibrosis 
level. Citrate acid was used to retrieve the antigen from the 
sections after deparaffination and rehydration. Then, 3% 
hydrogen peroxide was incubated with the sections in the dark 
for 25min. After blocking with 1% goat serum albumin for 
30min, the sections were incubated with primary antibodies, 
including mouse anti-α-SMA (ab7817, Abcam) and rabbit anti-
collagen I (ab260043, Abcam), overnight at 4℃. The sections 
were incubated with specific secondary antibodies for 1h 
and stained with DAPI for 5min. Images were captured by a 
fluorescence microscope (Nikon Eclipse Ti-SR, Nikon, Japan).
Statistical Analysis  All values are presented as the mean±SD. 
Statistical analysis for comparison of multiple columns or 
groups was performed by one-way ANOVA using GraphPad 
Prism 7 (GraphPad, San Diego, CA, USA), and a P<0.05 was 
considered statistically significant. 
RESULTS 
Characterization of the Exosomes from HEK293T Cells  
The exosomes were purified from HEK293T cell culture medium 
by ultracentrifugation, and characterization of the exosomes 
was successfully validated by TEM, NanoFCM and Western 
blot. The TEM results showed that the exosome particles were 
integral and hemispheric with a double membrane less than 
100 nm in diameter (Figure 1A). NanoFCM measured that the 
average diameter of exosome particles was approximately 73 nm 
at a concentration of 5.32×109/mL (Figure 1B). Western blot 
analysis showed that the expressions of the exosome marker 
proteins CD63, CD81, and TSG101 were positive (Figure 1C).
Exosomes Mediated Delivery of S58 into HConFs  To 
improve the therapeutic effect of S58, aptamer S58 was loaded 
into exosomes by PEI transfection according to the protocol. 
After transfection, excess S58 and PEI were removed by 
ultracentrifugation. In addition, we determined the loading 
efficiency of exosome-encapsulated S58 by using NanoFCM 
analysis. The results of the NanoFCM analysis showed that 
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incubation with exosomes for 3h reached the greatest aptamer 
retention rate at 88.83%±1.06% (Figure 2A). Furthermore, 

TEM showed that the morphological structure of exosomes 
loaded with S58 did not change after transfection with PEI 

Figure 1 Characterization of exosomes  A: TEM image of exosomes derived from HEK293T cells. Scale bar, 100 nm. B: NanoFCM analysis 
determined the average concentrations and size ranges of exosomes derived from HEK293T cells. C: Western blotting of 10 μg of protein from 
purified exosomes from HEK293T cells. TEM: Transmission electron microscopy; NanoFCM: Nano flow cytometry. 

Figure 2 Characterization of Exo-S58 and uptake of Exo-S58 by HConF cells  A: Aptamer S58 was incubated with exosomes for different 
times (1, 2, 3, and 4h). The aptamer retention rate was calculated by NanoFCM. n=3. B: TEM image of Exo-S58. Scale bar, 100 nm. C: 
NanoFCM analysis determined the average concentrations and size ranges of Exo-S58. D: Confocal microscopy images showed that HConFs 
could take in PKH26-labelled exosomes loaded with Alexa 488-labelled aptamer S58 at 24 and 48h. Scale bar, 10 μm. Exo-S58: Exosome-
mediated delivery of aptamer S58; TEM: Transmission electron microscopy. DAPI: 4’,6-diamidino-2-phenylindole.
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(Figure 2B). Then, NanoFCM measured that the average 
diameter of loaded exosome particles was approximately 78 nm 
at a concentration of 1.34×108/mL (Figure 2C). Therefore, 
incubation with exosomes for 3h was performed to load 
aptamer S58. To determine whether exosomes can deliver S58 
into HConFs, the fluorescence of PKH26-labelled exosomes 
and Alexa 488-labelled aptamer was detected after incubation 
with cells for 24h and 48h by confocal fluorescence imaging 
(Figure 2D). The confocal imaging results showed that 
HConFs could take up Exo-S58, and incubation with exosomes 
for 48h reached the highest exosome uptake efficiency.
Exo-S58 Inhibited TGF-β2-induced HConFs Cell Proliferation 
and Migration  Next, to investigate the cytotoxicity of 
Exo-S58, HConFs were incubated with different treatments 
for 24, 48, and 72h. The LDH release rate showed that 
Exo-S58 did not cause cytotoxicity to the cells (Figure 3A). To 
investigate the effect of Exo-S58 on HConFs cell proliferation 
and migration, they were cultured with different treatments. 
The data showed that there were no significant differences 
in cell viability among the different groups at 24h. TGF-β2 
significantly promoted HConFs viability, while the cell 

viability of the Exo-S58 group was decreased significantly 
compared with the naked S58 group at 48 and 72h (Figure 3B). 
The result also showed that TGF-β2 treatment significantly 
promoted HConFs migration, while the migration of Exo-S58 
treatment was decreased significantly compared with naked 
S58 treatment (Figure 3C). These results suggested that Exo-S58 
could inhibit cell proliferation and migration caused by TGF-β2 
more effectively compared with naked S58 in HConFs.
Exo-S58 Inhibited TGF-β2-induced HConFs Fibrosis  
Western blot was used to determine the antifibrotic effect 
of Exo-S58 after the HConFs were incubated with different 
treatments for 48h. The expression levels of the proteins 
fibronectin, collagen I, vimentin, α-SMA in the TGF-β2 group 
were increased significantly, while fibrosis protein expression 
levels in the Exo-S58 group were decreased significantly 
compared with those in the naked S58 group (Figure 4). The 
result indicated that Exo-S58 could reduce TGF-β2-induced 
fibrosis significantly in HConFs compared with naked S58.
Exo-S58 Prolonged the Bleb Survival in the Rat GFS 
Model  The rats were treated with subconjunctival injection 
containing saline, S58 or Exo-S58 randomly after surgery. To 

Figure 3 Effect of Exo-S58 on the cell proliferation and migration  A: Exo-S58 could be taken up by HConFs cells without cytotoxity. 
B: CCK-8 assay was performed after HConFs were incubated with different treatment for 24, 48, and 72h. C: Representative images and 
quantification of cell motility were performed after HConFs were incubated with different treatments for 24h. n=6; aP<0.05; bP<0.01; cP<0.001. 
Exo-S58: Exosome-mediated delivery of aptamer S58; CCK-8: Cell counting kit-8. 

The role of exosome-mediated aptamer S58



695

Int J Ophthalmol,    Vol. 15,    No. 5,  May 18,  2022        www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

better observe the change after GFS, IOP and filtering bleb 
areas of the rats were detected on operative days 0, 7 and 14. 
Results showed that the Exo-S58 and S58 treatment prolonged 
the filtering bleb retention significantly, while Exo-S58 
treatment prolonged bleb retention more effectively than S58 

treatment (Figure 5A, 5B). Statistical analysis of mean IOP in 
the surgical eyes showed that the IOP of rats in the Exo-S58 
group was lower than that of rats in the S58 group on operative 
day 14, while IOP of the control group was significantly higher 
than that in both groups (Figure 5C).

Figure 4 Western blot of fibrosis-related proteins  The protein levels of fibronectin, collagen I, vimentin and α-SMA were detected by Western 
blotting after HConFs were incubated with different treatments for 48h. n=3; aP<0.05; bP<0.01; cP<0.001. Exo-S58: Exosome-mediated delivery 
of aptamer S58; α-SMA: α-smooth muscle actin; GAPDH: Glyceraldehyde-3-phosphatedehydrogenase.

Figure 5 Exo-S58 treatment prolonged filtering blebs retention in rats GFS model  A, B: Typical pictures from slit lamp showing bleb 
characteristics in different groups (the area of blebs is outlined and measured) at operative days 7 and 14. C: The mean IOP of the operated eyes 
were measured. n=6; aP<0.05; bP<0.01; cP<0.001. Exo-S58: Exosome-mediated delivery of aptamer S58; GFS: Glaucoma filtration surgery; 
IOP: Intraocular pressure.
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Histologic Characteristics of Filtering Blebs  Rats from 
different groups were sacrificed on operative day 14. HE staining, 
Masson staining and immunofluorescence staining were 
performed on the sections to observe the pathological changes. 
Representative Masson staining images of sections showed 
that the control group had more collagen deposition in the 
surgical site than the Exo-S58 group and S58 group, while the 
Exo-S58 group exhibited significantly less collagen deposition 
than the S58 group (Figure 6A). Immunofluorescence staining 
showed that the expression of collagen-I and α-SMA in the 
control group was higher than that in the Exo-S58 group and 
S58 group, while Exo-S58 significantly decreased fibrosis 
protein expression relative to that in the S58 group (Figure 6B). 
The above results indicated that Exo-S58 reduces fibrosis in 
rats after GFS.
DISCUSSION
GFS is an effective therapeutic strategy for glaucoma[40]. The 
aqueous humor can be drained through the subconjunctival 
outflow channel, which is established through filtration 

surgery. However, excessive postoperative subconjunctival 
fibrosis would often reduce aqueous humor drainage and even 
lead to surgery failure[12]. MMC and 5-FU are widely used 
in the clinic to prevent subconjunctival excessive fibrosis, 
accompanied by many side effects such as bleb leakage, 
endophthalmitis and corneal epithelial toxicity[13-15]. A key 
molecule in fibrosis development is TGF-β, which accelerates 
cell differentiation, migration, and proliferation[41]. As one of 
the identified TGF-β isoforms, TGF-β2 is closely related to the 
process of conjunctival scarring and fibrosis[18-19]. To inhibit 
TGF-β2 stimulation, we developed aptamer S58 to specifically 
bind to TβRII. Based on the conformational flexibility and 
targeting specificity, aptamers can be considered as alternatives 
to an antibody to inhibit protein-protein interactions[42]. 
Although we have proved that aptamer S58 could reduce TGF-
β2-induced fibrosis in vitro and in vivo[28-29], the valid time of 
naked S58 is limited by several factors. Naked, single-stranded 
RNA could easily suffer from nuclease degradation and have 
poor circulation time[43]. The process of wound healing is 

Figure 6 Histologic characteristics  A: Representative HE staining and Masson staining images in the conjunctiva of rats after different 
treatments on postoperative day 14. Masson staining revealed collagen deposition, and the percentage of collagen deposits from different groups 
was measured. Scale bars: 50 μm. B: Immunofluorescence images of α-SMA and collagen I in the conjunctiva of rats after different treatments 
on postoperative day 14. n=6. Exo-S58: Exosome-mediated delivery of aptamer S58; HE staining: Haematoxylin-eosin staining; α-SMA: 
α-smooth muscle actin; DAPI: 4’,6-diamidino-2-phenylindole.
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long lasting. Therefore, it is necessary to identify a new drug 
delivery system to prolong or enhance the effect of aptamer 
S58 for successful application to the conjunctiva after GFS.
Nano-carrier drug delivery systems can significantly improve 
bioavailability and efficacy of the drug in the eye. Chitosan 
nanomicelles carrying dexamethasone exhibited good 
ocular tolerance and provided a relatively longer retention 
time[44]. Liposomes containing betaxolol hydrochloride were 
more efficient than the betaxolol hydrochloride solution on 
decreasing IOP in rabbits[45]. For RNA drug delivery, viral 
vectors[46], cationic polymers[47], liposomes[48] and exosomes[33] 
have been used. Among all the nano-based drug delivery 
systems, liposomes as the most common and extensively 
studied vehicle that have shown therapeutic potential in many 
biomedical areas[49]. Despite liposomes having the advantages 
of biocompatibility, bio-degradability and low toxicity[50], there 
are many limitations, including rapid clearance of liposomes, 
low targeting efficiency and potential immunogenicity[49,51-52]. 
Exosomes as the natural carrier possess some advantages 
over liposomes and polymeric nanoparticles in active 
targeting and any immunogenicity[52-53]. Exosomes are cell-
derived nanosized membrane vesicles, which transfer their 
components such as proteins, RNA, and DNA to mediate 
cell-to-cell communication[54-55]. Exosome natural biological 
properties contribute to high targeting efficiency, cell adhesion, 
cell fusion and cellular delivery of cargo[32]. Exosomes have 
been suggested as novel nanomaterials for treating fibrosis 
related diseases. Recent study explored that exosomes isolated 
from human umbilical cord-derived mesenchymal stem cell 
inhibited subretinal fibrosis by delivering miR-27b[56]. Guiot et 
al[57] suggested that macrophage-derived exosomes may reduce 
pulmonary fibrosis progression via the delivery of antifibrotic 
miR-142-3p. Similarly, miRNA-loaded human peripheral 
blood derived-exosomes may be used as a therapeutic tool 
to prevent cardiac fibrosis[58]. However, research about the 
application of exosomes on excessive subconjunctival fibrosis 
after GFS is lacking. Thus, we used exosomes to deliver the 
aptamer S58 in our study and to identify whether it would 
enhance or prolong the effect of the naked aptamer.
Our research suggests that Exo-S58 could reduce excessive 
fibrosis more effectively than naked S58 in HConF cells 
and in rat GFS models. Recent studies have employed 
exosomes purified from HEK293T cells as a new method 
for the in vivo delivery of siRNA[59-60]. In this study, we used 
exosomes derived from HEK293T cells to deliver aptamer 
S58. The obtained exosomes showed normal morphological 
characteristics by TEM, and aptamer S58 was loaded into 
exosomes by transfection efficiently without cytotoxicity. 
Furthermore, it was verified that Exo-S58 could be taken 
up by HConFs. In the HConFs treated with Exo-S58, cell 

proliferation, migration and the expression of fibrosis marker 
proteins were decreased significantly compared with those 
in the S58 group. In GFS rats subjected to subconjunctival 
injection of Exo-S58, Exo-S58 treatment prolonged filtering 
bleb retention and reduced the mean IOP compared with 
naked S58 treatment. The results of Masson staining and 
immunofluorescence staining indicated that Exo-S58 treatment 
significantly reduced fibrosis compared with S58 treatment. 
The loosely organized subconjunctival matrix in Exo-S58 
treated eyes may contribute to the prolonged retention time 
of filtering blebs. Taken together, our study demonstrated 
that exosomes are safe and valid carriers to deliver aptamers, 
and Exo-S58 reduced excessive fibrosis in HConFs and in 
rat GFS models more effectively than naked S58. Our results 
are consistent with previous studies which suggested that 
anticancer drugs encapsulated in exosomes demonstrated 
enhanced anticancer properties in vivo compared to free 
drugs[61]. We suppose that the exosome membrane’s lipid 
bilayer structure can protect the aptamer from degradation 
caused by direct contact with ribonuclease. It is also possible 
that exosomes as natural carriers yield a longer circulation 
and a reduced clearance rate increasing the circulation time 
of aptamer S58 without toxicity. In addition, exosomes 
may be internalized through interaction with the plasma 
membrane[62-65]. Indeed, there exists another hypothesis that 
exosomes can fuse with endosomal membranes[54,66]. As a 
result, exosomes loaded with aptamers S58 could easily be 
taken up by HConFs and improve the antifibrotic effect in the 
process. However, there were several limitations in our study. 
Although exosome-mediated S58 delivery in our study did 
not show obvious side effects and demonstrated the expected 
therapeutic effect, the possible impact of other cell-derived 
exosomes will need to be further studied and explained. 
Finally, the combination of exosomes and sustained-release 
material such as chitosan hydrogel may contribute to treating 
patients for long periods of time. Further studies are required 
to improve exosomes as drug carriers and the application of 
aptamer S58.
In conclusion, the study presents the evidence that exosomes 
are safe and valid carriers to deliver the aptamer S58. The 
exosome-mediated delivery of aptamer S58 can significantly 
reduce cell proliferation, migration and fibrosis in TGF-β2-
induced HConFs. Moreover, the exosome-mediated delivery 
of aptamer S58 exhibited superior antifibrotic effect compared 
to naked aptamer S58 in rat GFS models. The current study 
provided the possible therapeutic value for preventing scar 
tissue formation after GFS and other tissue fibrosis.
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