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Original Article

Tumor cell-derived exosomal microRNA-146a promotes non-small 
cell lung cancer cell invasion and proliferation by inhibiting M1 
macrophage polarization
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Background: Tumor-associated macrophages (TAMs) affects the outcomes of non-small cell lung cancer 
(NSCLC). NSCLC cells released exosomes to suppress the antitumor activity of TAMs. MiR-146a is a 
critical regulator in TAM polarization. We hypothesized that NSCLC cells released exosomal miR-146a to 
regulate TAM polarization and thus affected its antitumor activity.
Methods: We used H1299 cells-derived exosomes to stimulate THP-1 cells that was pretreated with 
phorbol 12-myristate 13-acetate (M0 macrophage). Flow cytometry and reverse transcription-quantitative 
polymerase chain reaction (PCR) were used to determine the polarization of macrophages. The conditioned 
medium of exosome-treated M0 cells was used to culture H1299 cells, and the Cell Counting Kit-8, Ki67, 
transwell and scratch wound assays were used to determine the biological behavior of H1299 cells. To 
investigate whether exosomal miR-146a regulates TAM macrophages through targeting tumor necrosis 
factor receptor-associated factor 6 (TRAF-6) and interleukin-1 receptor-associated kinase 1 (IRAK-1), we 
used small interfering RNA to knockdown the expressions of them.
Results: Upregulation of miR-146a inhibited M1 polarization and thus impaired the antitumor activity 
of TAMs. Exosomes released by H1299 cells can be taken by M0 macrophage, and they upregulated the 
expression of miR-146a in M0 macrophage. The exosome suppresses M1 polarization by exosomal miR-
146a. TRAF-6 and IRAK-1 mediated the inhibitive effects of exosomal miR-146a on M1 polarization.
Conclusions: NSCLC cells released exosomal miR-146a to inhibit the expressions of TRAF-6 and IRAK-
1 in TAMs, resulting in the impaired antitumor activity of TAMs. NSCLC cell-derived exosomal miR-146a 
represents a novel therapeutic target for NSCLC treatment.
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Introduction

Lung cancer is a leading cause of mortality worldwide (1).  
About 80% of lung cancer are non-small cell lung 
cancer (NSCLC) (2). The prognosis of NSCLC is poor, 
with a 2-year survival of only 42% (2). The interaction 
between the tumor cells and stromal cells in the tumor 
microenvironment (TME) is crucial for the development 
and metastasis of NSCLC, and thus largely determines 
the prognosis of NSCLC (3). Macrophages are a type of 
stromal cell that affects the growth and invasion of NSCLC 
by secreting various cytokines, chemokines and growth 
factors (4). These macrophages are termed tumor-associated 
macrophages (TAMs) (4). TAMs can be categorized into 
the classical subtype of activated macrophage (M1) and the 
alternative subtype of activated macrophages (M2) (5). The 
M1 macrophages are characterized by producing high levels 
of interleukin (IL)-23, IL-6, tumor necrosis factor (TNF)-α, 
IL-12, and IL-1β, while the M2 macrophages produce IL-
4, IL-10 and transforming growth factor-β (TGF-β) (6).  
M1 macrophage acts as a tumor suppressor, while M2 
macrophage acts as a tumor promotor (5). Increased M1 
macrophage density in the tumor islets and stroma is 

associated with an improved prognosis in NSCLC (7,8), 
while increased M2 macrophage is associated with a poor 
prognosis (9). Therefore, the M1/M2 balance is a potential 
therapeutic target in NSCLC (5). 

Exosomes are a subset of extracellular vesicles with 
diameters between 30 and 200 nm (10). They are composed 
of a lipid bilayer and contain a substantial number of 
bioactive molecules such as proteins, DNAs, and RNAs 
[e.g., microRNAs (miRNAs), mRNAs and long non-
coding RNAs (lncRNAs)]. By transmitting these bioactive 
molecules, exosomes can regulate the function of recipient 
cells. Previous studies indicated that exosomes were 
critically involved in the development of lung cancer 
(11,12). The immune cells (e.g., macrophages, T helpers, 
and dendritic cells) can take exosomes released by lung 
cancer cells (11). Among these immune cells, the critical 
role of TAM in the development of cancer has attracted 
much attention. By releasing the bioactive molecules, the 
exosomes can modulate the function of immune cells in the 
TME and thus affect the progression of NSCLC (12,13). 

MiRNAs are a class of short and single-stranded RNAs 
that regulate the expressions of various target genes 
at a post-transcriptional level (14). They are essential 
modulators in the immune response against lung cancer (15).  
Previous studies indicated that miRNAs are critical 
regulators of TAM polarization (16,17). In addition, 
lung cancer cells can regulate the polarization of TAMs 
by releasing miRNAs in exosomes, termed exosomal  
miRNAs (18). By targeting some signaling proteins of 
innate immune responses, such as TNF receptor-associated 
factor 6 (TRAF-6) and IL-1 receptor-associated kinase 
1 (IRAK-1), miR-146a tightly regulates the strength of 
the inflammation induced by lipopolysaccharide (19,20). 
Furthermore, miR-146a promotes M2 macrophage 
polarization in mouse and human cell lines (21-23). MiR-
146a is a critical regulator in TME. For example, in breast 
cancer, miR-146a promotes M2 TAM polarization and 
suppresses tumor growth in mice (24). In addition, exosomal 
miR-146a released by hepatocellular carcinoma (HCC) 
can promote the M2 TAM polarization and the educated 
TAM inhibits T cell response (25). Here, we found that 
lung cancer cells released exosomal miR-146a to inhibit 
M1 macrophage polarization, which in turn impaired 
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the antitumor activity of macrophages. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-5565/rc).

Methods

Cell culture

H1299 and THP-1 cell lines were purchased from BNCC 
(Henan, China) and cultured in Roswell Park Memorial 
Institute (RPMI) 1640 medium (Gibco, Shanghai, China) 
containing 10% fetal bovine serum (04-001, BIOIND, 
Israel), 1% streptomycin and penicillin (Gibco, Shanghai, 
China) in a constant temperature incubator at 37 ℃ with 
5% CO2. THP-1 cells (2×106) were treated with 100 ng/mL  
phorbol 12-myristate 13-acetate (PMA) (A606759, 
Sangon Biotech, Shanghai, China) for 24 h to induce M0 
macrophages (26). The H1299 cells were cultured at a 
concentration of 5×105.

Cell transfection

M0 macrophages and H1299 cells were transfected with 
miR-146a mimic, inhibitor and their controls (GenePharma, 
Shanghai, China). In addition, small interfering RNA 
(siRNA) of IRAK-1 (5'-GAGCCACCGCAGATTATCA-3') 
or TRAF-6 (5'-AGGGTCGCCTTGTAAGACA-3') 
(Ribio, Guangzhou, China) and their controls were also 
transfected into M0 macrophages. We used lipofectamine 
3000 (88-8005, Invitrogen by Thermo Fisher Scientific, 
Lithuania) for transfecting miR-146a mimic, inhibitor and 
all siRNAs. The transfection was performed following the 
instructions provided by the manufacturer. 

Isolation and characterization of exosomes

We used ultracentrifugation to isolate exosomes in the 
medium of H1299 cells according to a previously published 
protocol (27). The isolated exosomes were resuspension in 
50 μL PBS and stored at −80 ℃ for further analysis. The 
size and structure of the isolated exosomes were measured 
by nanoparticle tracking analysis (NTA) and transmission 
electron microscopy (TEM), respectively. In addition, 
exosome markers, including CD9, CD63, HSP70 and 
TSG101, were detected by Western blot. The exosomes 
were labeled with 100 μM PKH67 fluorescent (UR52303, 
Umibio, Shanghai, China) and isolated again with the Cell 

Culture Media Exosome Purification Mini kit (60400, 
NORGEN, Canada). The labeled exosomes were used 
to treat M0 macrophages for 8 h. Then, a fluorescent 
microscope was used to observe the exosome ingestion 
of macrophages. Before the fluorescent microscope 
observation, 10 μg/mL DAPI (C0065, Solarbio, Beijing, 
China) was used to stain the nuclear of the cell.

Reverse transcription-quantitative PCR (RT-qPCR)

The total RNA and miRNA in M0 macrophages and H1299 
cells were extracted using the RNAsimple Total RNA Kit 
(DP419, TIANGEN, Beijing, China) and the miRcute 
miRNA Isolation Kit (DP501, TIANGEN), respectively. 
Total RNA in exosomes was extracted using the Exosomal 
RNA Isolation Kit (58000, NORGEN). RNA was quantified 
using Microvolume Spectrometer (Titertek Berthold, 
Germany). The PrimeScrptTM RT reagent Kit with gDNA 
Eraser (RR047A, TaKaRa, Dalian, China) and TransScript 
miRNA First-Strand cDNA Synthesis SuperMix (AT351-
01, TransGen Biotech, Beijing, China) were used for total 
RNA and miRNA reverse transcription, respectively. The 
TB Green Premix Ex TaqTM II (RR820A, TaKaRa, Dalian, 
China) and PerfectStart Green qPCR SuperMix (TG-
AQ601-02, TransGen Biotech, Beijing, China) were used 
for amplification, respectively. The primers (Table 1) used in 
this study were synthesized by General Biosystems (Durham, 
NC, USA), and the expressions of mRNA and miRNA was 
normalized to glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) and U6, respectively. The data were analyzed 
using the 2−ΔΔCt method (28).

Western blot analysis

The Mixed RIPA buffer (R0010, Solarbio, Beijing, China) 
with phenylmethanesulfonyl fluoride (PMSF) (P0100, 
Solarbio) at 100:1 was used to lysis cells and exosomes. 
The extracted proteins were quantified using the BCA 
Protein Assay Kit (C503021, Sangon Biotech, Shanghai, 
China). The antibodies used in Western blot includes 
rabbit anti-human CD9 (ab263019, 1:1,000, Abcam), CD63 
(ab134045, 1:2,000, Abcam), HSP70 (ab181606, 1:1,000, 
Abcam), TSG101 (ab125011, 1:2,000, Abcam), IRAK-1 
(ab180747, 1:1,000, Abcam), TRAF-6 (ab33915, 1:2,000, 
Abcam), GAPDH (D110016, 1:5,000, Sangon Biotech), and 
horseradish peroxidase (HRP)-conjugated goat anti-rabbit 
IgG (D110058, Sangon Biotech). The relative expressions 
of the target proteins were normalized to GAPDH.

https://atm.amegroups.com/article/view/10.21037/atm-22-5565/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-5565/rc
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Flow cytometry

M0 macrophages were collected and resuspended using 
500 μL PBS. Cells were treated with 20 μL fluorescein 
isothiocyanate (FITC)-labeled mouse anti-human CD86 
(555657, BD Biosciences, NJ, USA) and allophycocyanin 
(APC)-labeled mouse anti-human CD206 (550889, BD 
Biosciences) in the dark at room temperature for 15 minutes 
before analysis. The data were analyzed by Flow Cytometry 
(BD Biosciences) and the CellQuest software. In apoptosis 
assay, H1299 cells cultured in the conditioned medium were 
tested by Annexin V (BD Biosciences) and 5 µL Propidium 
Iodide assay.

Cell Counting Kit-8 (CCK-8) assay

The H1299 cells (3×103 cells/well) were cultured in 96-
well plates for 4 h. Subsequently, the cells were washed and 
cultured in the conditioned medium from M0 macrophages. 
The proliferation of the cells was tested by CCK-8 
(BS350B, Biosharp, Beijing, China) at 24, 48, 72 and 96 h,  
respectively, according to the manufacturer’s manual. A 
multimode plate reader was used to measure the absorbance 
at 450 nm (PerkinElmer, Shanghai, China).

Scratch wound assay

H1299 cells were cultured in a 6-well plate at 106 cells/
well for 4 h and scratched with a 200 µL sterile pipette 
spearhead. After twice gently PBS washing to remove 

cell debris, H1299 cells were cultured in the conditioned 
medium from M0 macrophages. After 24 h, the cells were 
observed and imaged under a microscope (Olympus, Tokyo, 
Japan). 

Transwell assay

Matrigengel (082704, ABW, Shanghai, China) was diluted 
at 300 μg/mL with serum-free RPMI-1640 medium. Then 
100 µL solution was incubated in the upper chamber for  
30 minutes (the migration assay did not have the 
Matrigengel). The pore size of the upper chamber was 8 μm.  
H1299 cells were suspended in serum-free RPMI-1640 
medium and then inoculated in the upper chamber at  
2×104 cells/300 µL. Meanwhile, 700 µL of conditioned 
medium from M0 macrophage was added to the lower 
chamber. After 24 h, the cells in the lower chamber were 
stained with 0.1% crystal violet and photographed under an 
inverted fluorescence microscope (Olympus, Tokyo, Japan).

Ki67 assay

H1299 cells were cultured with the conditioned medium 
of M0 macrophages transfected with tumor necrosis factor 
receptor-associated factor 6 (TRAF-6) or interleukin-1 
receptor-associated kinase 1 (IRAK-1) siRNA. After 24 h,  
a Ki67 assay was used to determine the proliferation of 
H1299 cells. We performed the Ki67 assay according to the 
manual provided by the manufacturer. 

Table 1 Primer sequences for RT-qPCR

Gene Forward primer Reverse primer

miR-146a TGAGAACTGAATTCCATGGGTT GATCGCCCTTCTACGTCGTAT

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

TNF-α TGAGCACTGAAAGCATGATC TTATCTCTCAGCTCCACGCC

iNOS ACAGGAGGGGTTAAAGCTGC TTGTCTCCAAGGGACCAGG

IL-10 GAGGCTACGGCGCTGTCA TCGACGGCCTTGCTCTTG

TGF-β AGGTCACCCGCGTGCTAAT GCTTCTCGGAGCTCTGATGTGT

IRAK-1 TGAAGAGGCTGAAGGAGAA CACAATGTTTGGGTGACGAA

TRAF-6 GTCCCTTCCAAAAATTCCAT CACAAGAAACCTGTCTCCTT

GAPDH GTCATCCCTGAGCTGAACGG GGGTCTTACTCCTTGGAGGC

RT-qPCR, reverse transcription-quantitative PCR; miR-146a, microRNA-146a-5p; TNF-α, tumor necrosis factor α; iNOS, inducible nitric 
oxide synthase; IL-10, interleukin 10; TGF-β, transforming growth factor β; IRAK-1, interleukin-1 receptor-associated kinase 1; TRAF-6, 
tumor necrosis factor receptor-associated factor 6; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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Statistical analyses

Data analyses were performed using SPSS 26.0 statistical 
software (IBM, Armonk, NY, USA). Continuous data are 
expressed as mean ± standard deviation. Means between 
two different groups were compared using the independent 
samples t-test. One-way analysis of variance (ANOVA) was 
used to compare the means of multiple groups. P<0.05 was 
considered statistically significant.

Results

MiR-146a promoted M2 polarization and inhibited M1 
polarization in macrophages

To study the roles of miR-146a on macrophage polarization, 
we treated THP-1 cells with 100 ng/mL PMA for 24 h to 
generate M0 cells. MiR-146a mimic and inhibitor were 
transfected into M0 cells. Flow cytometry and RT-qPCR 
were used to detect the polarization of the M0 macrophage. 
Figure 1A shows the high efficacy of transfection, tested by 
fluorescence staining and RT-qPCR. Upregulation of miR-
146a reduced CD86 expression, while its downregulation 
did not affect CD86 expression (Figure 1B). In addition, 
the upregulation of miR-146a increased CD206 expression, 
and its downregulation decreased it (Figure 1B). MiR-146a 
mimic significantly reduced the expressions of M1 markers 
[TNF-α and inducible nitric oxide synthase (iNOS)] and 
increased the expression of M2 markers (IL-10 and TGF-β), 
while the miR-146a inhibitor had the opposite effect 
(Figure 1C). These results suggest that miR-146a promotes 
macrophage polarization toward the M2 phenotype.

Upregulation of miR-146a in macrophages promoted 
H1299 cell proliferation, migration, and invasion

We investigated the functional impact of miR-146a in 
macrophages on the proliferation, migration, and invasion 
of H1299. MiR-146a mimic or inhibitor was transfected 
into M0 cells. After 24 h, its conditioned medium was used 
to culture H1299 cells. As shown in Figure 2A, miR-146a 
mimic inhibited the apoptosis of H1299 cells, and the miR-
146a inhibitor promoted apoptosis. Figure 2B shows that 
miR-146a mimic promoted the proliferation, and the miR-
146a inhibitor decreased the proliferation of H1299 cells. 
Figures 2C,2D show that conditioned medium from miR-
146a mimic-transfected macrophage significantly promoted 
the migration and invasion of H1299 cells, while miR-146a 
inhibitor transfection had opposite effects. Taken together, 

miR-146a impairs the antitumor activities of macrophages 
in vitro.

Exosomes derived from H1299 cells could be taken by M0 
macrophage and upregulate miR-146a expression

With ultracentrifugation, we isolated exosomes from the 
culture medium of H1299 cells. The exosomes were further 
determined by TEM (Figure 3A), NTA (Figure 3B) and 
Western blotting (Figure 3C). We transfected miR-146a 
mimic into H1299 cells, and the transfection efficiency was 
tested by fluorescence microscope (Figure 3D) and RT-
qPCR (Figure 3E). We noted that the transfection of miR-
146a mimic significantly increased the miR-146a level in 
exosomes from H1299 cells (Figure 3F). The exosomes 
released by H1299 cells could be taken by M0 macrophages 
(Figure 3G) and increased the expression of miR-146a in 
M0 macrophages (Figure 3H). Furthermore, exosomes 
released by H1299 cells transfected with miR-146a mimic 
could significantly upregulate the expression of miR-146a in 
M0 macrophages (Figure 3I). Taken together, these results 
indicate that H1299 cell-released exosomal miR-146a can 
upregulate the expression of miR-146a in M0 macrophages. 
 

Exosomal miR-146a inhibited M1 macrophage 
polarization, H1299 cells migration and invasion

To detect the effects of exosomal miR-146a on the 
polarization and antitumor activity of macrophages, we used 
the H1299 cells-released exosome to treat M0 macrophages. 
As shown in Figure 4A, TNF-α and iNOS on macrophages 
were significantly decreased by exosomes released by H1299 
cells, while the expressions of IL-10 and TGF-β were not 
affected. In addition, exosomes from H1299 cells that 
transfected with miR-146a mimic significantly decreased the 
expression of CD86, but failed to increase the expression of 
CD206 (Figure 4B). Furthermore, exosomes from H1299 
cells transfected with miR-146a mimics significantly 
decreased the mRNA levels of TNF-α and iNOS, increased 
the expression of IL-10, but not TGF-β (Figure 4C). 

To investigate the antitumor activity of M0 macrophage 
treated with H1299-released exosomes, we used the 
conditioned medium of exosome-treated M0 macrophage 
to culture H1299 cell, and a transwell assay was used to 
test the migration and invasion abilities of H1299 cells. 
As shown in Figure 4D, transfection of miR-146a mimic 
promoted the migration and invasion abilities of H1299 
cells. Taken together, exosomal miR-146a could inhibit the 
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Figure 1 MiR-146a inhibited M1 macrophage polarization and promoted M2 polarization. (A) Fluorescence staining analysis of FAM-
labeled miR-146a mimic in M0 macrophages (scale bar =100 μm). FAM is a fluorophore used for the labeling of DNA as a fluorescent 
marker. The expression level of miR-146a in M0 macrophages transfected with miR-146a mimic or miR-146a inhibitor was tested by RT-
qPCR. (B) The expressions of CD86 or CD206 in M0 macrophages transfected with miR-146a mimic or miR-146a inhibitor were tested 
by flow cytometry. (C) The mRNA levels of TNF-α, iNOS, IL-10, and TGF-β in M0 macrophages transfected with miR-146a mimic or 
miR-146a inhibitor were tested by RT-qPCR. All data are presented as mean ± standard deviation (n=3). *, P<0.05; **, P<0.01; ***, P<0.001. 
NC, negative control; FAM, carboxyfluorescein; RT-qPCR, reverse transcription-quantitative PCR; TNF-α, tumor necrosis factor α; iNOS, 
inducible nitric oxide synthase; IL-10, interleukin 10; TGF-β, transforming growth factor β.

antitumor activity of macrophages in vitro.

MiR-146a inhibited M1 macrophages polarization by 
downregulating IRAK-1 and TRAF-6

As previous studies indicated that IRAK-1 and TRAF-
6 are targets of miR-146a (19,20), we tested whether the 
activity of exosomal miR-146a was mediated by IRAK-1 
and TRAF-6. The expressions of IRAK-1 and TRAF-6 in 

M0 macrophages were significantly decreased by miR-146a 
mimic and increased by miR-146a inhibitor, as indicated by 
RT-qPCR and Western blot (Figures 5A,5B). We knocked 
down the expressions of IRAK-1 and TRAF-6 with siRNA 
(Figures 5C,5D). IRAK-1 or TRAF-6 siRNAs significantly 
inhibited CD86 expression in M0 macrophages, but 
they showed no significant effect on CD206 expression  
(Figure 5E). Taken together, these results indicate that 
miR-146a inhibits M1 macrophage polarization by 
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Figure 2 Conditioned medium from M0 macrophage transfected with miR-146a mimic promoted H1299 cell viability, migration, and 
invasion. The M0 macrophages were transfected with miR-146a mimic or inhibitor. After 24 h, the conditioned medium was used to culture 
H1299 cells. (A) The apoptosis of H1299 cells was tested by annexin V/propidium iodide apoptosis assay. (B) The viability of H1299 cells 
was tested by CCK-8 assay. (C) The migration of H1299 cells was tested by scratch wound assay (scale bar =100 μm). (D) The migration 
and invasion of H1299 cells were tested by a transwell assay (scale bar =100 μm). Cells were stained with 0.1% crystal violet. All data are 
presented as mean ± standard deviation (n=3). *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. NC, negative control; CCK-8, Cell 
Counting Kit-8.

downregulating IRAK-1 and TRAF-6.

Downregulation of IRAK-1 or TRAF-6 in M0 
macrophages impaired its ability to promote H1299 
proliferation, migration, and invasion

Next, we tested whether the effects of exosomal miR-146a 
derived from H1299 cells were mediated by IRAK-1 and 
TRAF-6. M0 macrophages were transfected with IRAK-1  
and TRAF-6 siRNAs, and their conditioned medium was 
used to culture H1299 cells. As shown in Figure 6A, the 
proliferation of H1299 cells was significantly promoted by 
IRAK-1 and TRAF-6 siRNAs transfection. In addition, 

IRAK-1 and TRAF-6 siRNAs also promoted the migration 
and invasion of H1299 cells (Figure 6B). Therefore, we 
concluded that miR-146a in M0 macrophages regulates its 
antitumor activity by targeting IRAK-1 or TRAF-6. 

Discussion

TEM is crucial for the progression of cancer. Macrophages 
are one of the most abundant cells within TME. They 
have noteworthy plasticity in TME and can polarize to 
M1 and M2 macrophages, depending on the cytokines and 
chemokines in TME. The balance between M1 and M2 
macrophages largely determines the prognosis of NSCLC. 
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Figure 3 Exosomal miR-146a could be transferred from H1299 cells to macrophages and upregulated miR-146a expression. (A) H1299 
cells-derived exosomes were examined by TEM (scale bar =100 nm). (B) The particle sizes of exosomes were measured by NTA. (C) The 
expressions of CD9, CD63, HSP70, and TSG101 in exosomes were detected by Western blot. (D) Fluorescence staining analysis of FAM-
labeled miR-146a mimic in H1299 cells (scale bar =100 μm). (E) RT-qPCR tested the miR-146a expression in H1299 cells transfected with 
miR-146a mimic. (F) The expression of miR-146a in exosomes derived from H1299 cells transfected with miR-146a mimic was tested by 
RT-qPCR. (G) PKH67-labeled exosomes derived from H1299 cells were co-cultured with M0 macrophages for 8 h and were observed by 
fluorescence microscope (scale bar =100 μm). PKH67 is a lipophilic dye used to label exosomes. (H,I) The expression of miR-146a in M0 
macrophages treated with exosomes derived from H1299 without (H) or with (I) miR-146a mimic was tested by RT-qPCR. All data are 
presented as mean ± standard deviation (n=3). ***, P<0.001; ****, P<0.0001. NC, negative control; Exo, exosomes; FAM, carboxyfluorescein; 
NTA, nanoparticle tracking analysis; PBS, phosphate-buffered saline; RT-qPCR, reverse transcription-quantitative PCR; TEM, 
transmission electron microscopy.

M1 macrophage in TME improves the outcomes of 
NSCLC, while M2 macrophage has the opposite effect. In 
this study, we found that NSCLC cells released exosomes 
to inhibit M1 macrophage polarization, resulting in the 
impairment of its antitumor activity. The inhibitive activity 
of tumor cell-released exosome was mediated by miR-146a, 

which inhibits M1 macrophage polarization by targeting 
TRAF-6 and IRAK-1. Although the findings in this study 
was not validated by animal model, this is the first study 
investigating the role of exosomal miR-146a in regulating 
TAM polarization in lung cancer.

Some studies have revealed that NSCLC cells can release 
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Figure 4 Exosomal miR-146a promoted migration and invasion of H1299 cells by inhibiting the polarization of M1 macrophages. (A) 
M0 macrophages were co-cultured with exosomes derived from H1299 cells for 24 h. The expression of M1 markers (TNF-α and iNOS) 
and M2 markers (IL-10 and TGF-β) were tested by RT-qPCR. (B) H1299 cells were transfected with miR-146a mimic and the exosomes 
were isolated to treat M0 cell. The expressions of CD86 and CD206 were detected by flow cytometry. (C) The mRNA levels of TNF-α, 
iNOS, IL-10, and TGF-β were tested by RT-qPCR. (D) A conditioned medium of M0 macrophages was used to culture H1299 cells. The 
migration and invasion of H1299 cells were tested by a transwell assay (scale bar =100 μm). Cells were stained with 0.1% crystal violet. All 
data are presented as mean ± standard deviation (n=3). **, P<0.01; ***, P<0.001; ****, P<0.0001. TNF-α, tumor necrosis factor α; iNOS, 
inducible nitric oxide synthase; IL-10, interleukin 10; TGF-β, transforming growth factor β; PBS, phosphate-buffered saline; Exo, exosomes; 
NC, negative control; RT-qPCR, reverse transcription-quantitative PCR.
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Figure 5 MiR-146a inhibited M1 macrophage polarization by downregulating IRAK-1 and TRAF-6. M0 macrophages transfected 
with miR-146a mimic or inhibitor, and the expressions of IRAK-1 and TRAF-6 were tested by RT-qPCR (A) and Western blot (B). M0 
macrophages transfected with IRAK-1 or TRAF-6 siRNA, and the expressions of IRAK-1 and TRAF-6 were tested by RT-qPCR (C) and 
Western blot (D). (E) The expressions of CD86 or CD206 in M0 macrophages were tested by flow cytometry. All data are presented as 
mean ± standard deviation (n=3). *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. NC, negative control; IRAK-1, interleukin-1 receptor-
associated kinase 1; TRAF-6, tumor necrosis factor receptor-associated factor 6; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 
siRNA, small interfering RNA; RT-qPCR, reverse transcription-quantitative PCR.
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exosomes to disturb the macrophage polarization and thus 
promote the prognosis of NSCLC in turn. For example, 
under hypoxic conditions, NSCLC cell-derived exosomes 
could enhance M2 macrophage polarization and NSCLC 
progression by regulating the PKM2/AMPK pathway (29). 

In addition, NSCLC cells can also promote M2 macrophage 
polarization by enhancing the oxygen consumption rate of 
macrophages (30) or releasing circRNA (31), lncRNA (32) or 
miRNA (18,33,34) in it. A previous study indicated that the 
exosomes released by hypoxic NSCLC cells have a higher 
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Figure 6 Downregulation of IRAK-1 or TRAF-6 promotes H1299 proliferation, migration, and invasion by inhibiting M1 macrophage 
polarization. (A) A conditioned medium of M0 macrophages after 24 h of IRAK-1 siRNA or TRAF-6 siRNA treatment was used to culture 
H1299 cells. Then, the proliferation of H1299 cells was investigated by Ki67 staining (scale bar =100 μm). (B) The migration and invasion 
of H1299 cells were tested by a transwell assay (scale bar =100 μm). Cells were stained with 0.1% crystal violet. n=3. *, P<0.05; **, P<0.01; 
***, P<0.001; ****, P<0.0001.

level of miR-21, which can be transmitted to macrophages 
and induce M2 macrophage polarization by targeting 
interferon regulatory factor 1 (IRF1) (33). Another study 
shows that NSCLC cells released exosomal miR-181b to 
promote M2 polarization and suppress M1 polarization 
(34). Our study added new evidence that exosomal miRNAs 
released by NSCLC cells can regulate the polarization 
of TAM. In addition to promoting M2 macrophage 
polarization, exosomes derived from NSCLC cells can also 
inhibit M1 macrophage polarization. This finding is also 
supported by two previous studies (32,34).

Accumulating evidence has revealed that miR-146a was 
critically involved in the development of NSCLC (35).  
It acts as an antiproliferative, anti-inflammatory and 
proapoptotic agent, as well as a metastatic modulator 
in NSCLC cells (35). In addition, miR-146a rs2910164 
polymorphism is associated with lung cancer risk (36). 

However, no study has revealed that NSCLC cells 
released exosomal miR-146a to modulate TAM’s function 
and polarization. MiR-146a was firstly reported to be a 
negative regulator in innate immune response triggered by 
lipopolysaccharides (19) or vesicular stomatitis virus (37). 
Previous studies also revealed that the expression level of 
miR-146a is higher in M2 macrophages than that in M1 
macrophages (22,38). Increased miR-146a promoted M2 
polarization and suppressed M1 macrophage polarization 
by targeting Notch1 (21), TRAF-6 (39) and inhibin-β (22).  
Nevertheless, no study has investigated the effects of 
miR-146a on the macrophage’s antitumor activity to 
NSCLC. Our study revealed that miR-146a inhibited M1 
polarization and impaired its antitumor activity. Our work 
is also supported by some clinical observational studies. For 
example, a previous study indicated that exosomal miR-146a 
in serum of lung cancer patients was significantly higher 
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than that in healthy individuals (40), and the NSCLC 
patients with increased M1 macrophage density in the 
tumor islets and stroma had a better prognosis (7,8). 

We used TRAF-6 and IRAK-1 siRNAs to knockdown 
their expression and found that downregulations of TRAF-
6 and IRAK-1 reproduced the effects of miR-146a mimic 
on M0 macrophage polarization and its antitumor activity. 
This result indicates that TRAF-6 and IRAK-1 partially 
mediated the biological effects of miR-146a in macrophage 
polarization. TRAF-6 and IRAK-1 are two signaling 
proteins of innate immune responses. They mediated the 
signals from Toll-like receptor 4 (TLR4) and its adaptor 
MyD88, and modulated the activation of NF-κB, resulting 
in the production of inflammatory cytokines (e.g., IL-6,  
TNF-α) (41). Because the secretion of inflammatory 
cytokines is the typical characteristic of M1 macrophage, it is 
reasonable to hypothesize that inhibiting the production of 
inflammatory cytokines would inhibit M1 polarization. Our 
work was supported by a previous study that revealed that 
IRAK-1 and TRAF-6 were upregulated in M1 macrophage 
but downregulated in M2 macrophage (38). Furthermore, 
downregulating of TLR4 (42,43) or TRAF-6 (39) would 
inhibit M1 polarization or promote M2 polarization. 

Conclusions

Taken together, our study indicated that NSCLC cells could 
release exosomal miR-146a to suppress M1 macrophage 
polarization. Suppressed M1 macrophage polarization 
impairs its antitumor activity and thus promotes the 
development of NSCLC. Therefore, exosomal miR-146a 
represents a potential therapeutic target for NSCLC.
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